RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. THIRD SEMESTER EXAMINATION, DECEMBER 2017

SECOND YEAR [BATCH 2016-19]

CHEMISTRY [General]

Date : 16/12/2017 Time : 11 am - 1 pm

Paper : III

Full Marks : 25

(Attempt one question from each Unit)

<u>Unit - I</u>

[13 marks]

1.	a)	How will you prepare borazole and N-methyl borazole? Give a short description on the struct and bonding of borazole.	cture [2+2+3]
	b)	Compare the (i) acid strength and (ii) reducing properties of H_3PO_4 . H_3PO_3 and H_3PO_2 explanation.	with [3]
	c)	What is 'inert-pair effect'? $SnCl_2$ is a strong reducing agent but $PbCl_2$ is not. Explain.	[1+2]
2.	a)	Give a brief description on phosphazene.	[3]
	b)	NCl ₃ and PCl ₃ give different products on hydrolysis. Explain.	[3]
	c)	Hydroxylamine has both oxidising and reducing properties. Explain with equations.	[3]
	d)	Explain—	
		i) CO_2 is gas but SiO_2 is solid.	[2]
		ii) Diamond is an insulator but graphite is a conductor and silicon is a semiconductor.	[2]

Unit - II [12 marks]

3.	a)	SF_6 is inert but TeF_6 gets hydrolyzed easily. Why?	[2]	
	b)	Explain the exceptionally high reactivity of F ₂ .	[2]	
	c)	c) How sodium thiosulfate is prepared? Show that sodium thiosulfate is a reducing agent a		
	1)	complexing agent.	[1+2]	
	d)	Complete the reactions :	[.2+1.2]	
		i) $XeF_6 + SiO_2 \rightarrow$		
		ii) $XeF_6 + H_2O \rightarrow$		
	e)	How will you chemically detect Br^- (bromide) in presence of I^- (iodide)? Give reactions.	[2]	
4.	a)	Why helium is very difficult to liquify?	[1]	
	b)	What happens when silver nitrate is added to a solution of sodium thiosulfate?	[1]	
	c)	Arrange the HX ($X = F, Cl, Br, I$) in terms of their acid strength with appropriate explanation.	[2]	
	d)	Write a short note on S_4N_4 .	[2]	
	e)	Discuss the preparations and structures of three xenon fluorides.	[3]	
	f)	State with equations, what happens when—		
		i) SO ₂ gas is passed through an acidified solution of potassium dichromate.	[1.5]	
		ii) Sodium hypochlorite is added into cold NH ₃ solution.	[1.5]	

— × –